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A DESIGN METHOD FOR TWO-DIMENSIONAL 
CASCADES OF TURBOMACHINERY BLADES 
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SUMMARY 

A design method for two-dimensional cascades of turbomachinery blades is presented. A finite element 
potential flow program is extended to allow fluid to transpire through the blade surface, the displaced surface 
streamline defining a new blade geometry. The potential changes are related linearly to the transpired flow 
rates. New surface velocities may then be specified as a function of surface distance, in accordance with 
boundary layer considerations. Closure and smoothness of the new blade are successfully achieved, while 
large changes in the blade geometry are possible. 
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INTRODUCTION 

The boundary layers on a turbine blade are determined largely by the distribution of pressure on 
the blade surfaces, for given inlet flow disturbance conditions. Therefore, in order to minimize 
profile loss, it is desirable that the designer should be able to control the surface pressures while 
ensuring that the required turning of the flow is achieved. Inverse design methods grant this ability 
by calculating the blade geometry corresponding to specified surface pressures and inlet flow 
conditions. 

A program for the analysis of flow in cascades using a mesh of triangular finite elements has been 
described by Whitehead and Grant.' This program, called FINEL, is limited to subsonic inlet and 
outlet flow and to only small supersonic patches on the blade surface. The method has been 
extended to deal with supersonic flow, and the program, called FINSUP, has been described by 
Whitehead and Newton.' Using a technique of modelling small changes to the blade shape by a 
transpiration flow through the original blade surface, Cedar and Stow3 have extended FINSUP to 
operate in the design mode. 

The calculation to be described in this paper uses basically the same transpiration technique as 
Cedar and but is an extension of the earlier subsonic program FINEL. It does not therefore 
include the effects of supersonic flow, or the effects of variation of stream tube height or correction 
for stream surface curvature. The new features arc the ways in which the constraints for blade 
closure and constant circulation are applied, and the way in which smoothing is applied to 
correct an intrinsic numerical instability in the method. This enables much larger changes to be 
made to the blade profile. 
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Calculate the surface displacements 
arid new blade coordinates 
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I 
Input cascade gemetry and inlet flow conditions 

t 
Construct the mesh 

I 
Calculate the flow + 

Calculate the matrix relating the potential 
changes to the trarispired flows 

t 
FInpiltew surface velocities 

Modify the new vclozities to ensure blade closilre 

t 
Calculate the transpired flow rates 

Modify the transpired flow rates for smoothness 

t 

The paper is divided into three main parts. In the first part the flow program is briefly described 
and the relationship between the changes in the surface potentials and the transpired flow rates 
is derived. In the second part the design method is described, and in the third part its practical 
use is explained by way of examples. A flow chart for the whole design procedure is given in 
Figure 1, to which reference can be made for clarification as each stage is described. 

THE POTENTIAL FLOW CALCULATION METHOD AND EXTENSION 
FOR SURFACE FLOW TRANSPIRATION 

A typical finite element mesh for a turbine cascade is shown in Figure 7. A general point within 
a triangular element is defined by area co-ordinates Z , ,  2, and Z,, where (see Figure 2) 

Zi = A i / A ,  i = 1,2,3. 

A , ,  A ,  and A ,  are the areas shown and A is the total area of the element. The flow is assumed 
to be two-dimensional and irrotational and therefore may be described by a velocity potential. 
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i 

Figure 2. Area co-ordinates 

E 
Figure 3. Elements adjoining node L 

The potential 4 is assumed to vary linearly within each element, so that at any interior point 

cb = ( b k Z k ,  

where 6, gives the values of 4 at the three nodes of the element. The specific mass flow within 
an element is given by 

where x1 and x2 are length co-ordinates corresponding to the axial and tangential directions. The 
continuity equation is then 

aqi/axi = o 
This equation is approximated using the Galerkin technique. Multiplying by Z, and integrating 
over the element for each value of k gives 

j Z , g d A  = 0. 

Using Gauss’s theorem this equation can be transformed to 

niqiZ, ds - qi--dA = 0, j 12 
where the first integral is round the element boundary and n is the unit vector normal to the 
boundary. Now consider all the elements adjoining a node L, as shown in Figure 3. Summing 
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equation (2) over all these elements, with k always referring to node L, gives 

Now the first term in this equation expresses the flow disappearing down the cracks meeting at 
L, weighted towards L, and must be set to equal zero for any internal node to represent the 
continuity equation. The integrand in the second term is uniform over each element, so using 
equation (1 )  this becomes 

az, azk 1 p$,--A=O. 
elements axi axi (4) 

Since the flow is isentropic, the density p can be expressed in terms of the velocity so that equation 
(4) becomes a non-linear equation for the unknown values of &. This is solved by the Newton- 
Raphson technique. The correct solution can be expressed as the sum of the current approxim- 
ation, denoted by-, and a correction term, denoted by ’. Assuming the correction terms are small, 
terms of second and higher order may be neglected and equation (4) becomes 

which may be written as 

1 Kkm$;+ 1 Fk=O. 
elements elements 

ii is the local speed of sound. The second term, the flow defect at node L, and the values of Kk, are 
known from the current approximation. The implementation of appropriate boundary conditions 
is discussed by Whitehead and Grant.’ Equation (5) may then be used to obtain a converged 
solution iteratively, starting from a uniform flow equal to the inlet flow. 

It has been specified that no flow may pass through the blade surface; that is, niqi = 0. Using the 
above framework, it is possible to perturb the converged solution by allowing flow to pass through 
the blade surface, as shown in Figure 4. Denoting the perturbation by ’, equations (3) and (5) give 

The first term in this equation may be written as 
N- 1 

1 

Figure 4. Surface flow transpiration 
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where F J  = niq;sj, which, with j a surface node, is the flow rate through the surface between nodes j 
and j + 1. D k j  is equal to 3 when k = j and when k = j + 1 and equal to 0 otherwise. s j  is the distance 
between nodes j and j + 1. N is the number of nodes round the blade surface, excluding the node at 
the end of the cusp. 

Equation (6) is then in a similar form to equation (5 ) ,  only the values of 4; being unknown. If the 
values of F i  are small, then a good approximation to the modified flow may be obtained from 
equation (6) and the corresponding equation for each node. A matrix J may be determined, linearly 
relating the potential changes at the nodes to the transpired flow rates: 

@' = JF', (7) 

where F' is an ( N  - 1)-dimensional vector. 
This relationship opens two possibilities. One could simulate the effect of boundary layers by 

transpiring fluid through the surface, to achieve a displacement thickness calculated by a boundary 
layer prediction program. The modifications to the blade surface velocities determined from 
equation (7) and the boundary layer calculation could be repeated iteratively till convergence was 
achieved. The displacement effect is important when the boundary layers are thick or separated, 
which is more likely on compressor blades than on turbine blades. 

The second possibility is to use equation (7) to redesign an initial blade, to achieve prescribed 
potentials at the nodes. The next section is concerned with the detail of the means by which such a 
design program was developed. 

A DESCRIPTION OF THE DESIGN METHOD 

There are N - 1 variables Ff corresponding to the boundary sections between the N surface 
nodes, excluding the section at the trailing edge. The velocity at the mid-point between nodes 
i and i + 1 may be defined by 

where a positive flow direction is in the direction of i increasing, as defined in Figure 4. Now define 
new velocities by 

u; = ui + u;. 
Since the velocity field is unchanged by the addition of a constant to the potential field, only new 
potential differences may be calculated from the new velocities. 

Writing 
41 = 4i + 4 i y  

equation (8) gives 

or 

From equation (7), 
N-1 

4; - 4; = 1 (Jij - J l j ) F J .  
j =  1 
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Combining equation (9) and equation (10) gives 
i -  1 N- 1 

j =  1 1 U i s j =  j =  c 1 ( J i j - J l j ) F i .  

From this set of N - 1 linear equations, the N - 1 unknown variables F :  may be determined by 
inversion of the matrix (Jij-Jlj) ,  finally giving a relationship of the form 

It  should be noted that the matrix B is independent of the chosen velocity changes, U : ,  being 
determined solely from matrix J and the surface lengths si. 

In order that the mass flow through the cascade should be conserved, and closure of the new 
blade achieved, it is necessary to satisfy the constraint that the total mass flow through the blade 
surface should be zero. From equation (12) this requirement becomes 

N- 1 1 F : = O ,  
i =  1 

or 
N- 1 1 c j u ; = o ,  
j =  1 

N -  1 
where the constants c i  are determined by 

.~ 

c j  = C Bij. 
j= 1 

Equation (13) effectively removes one degree of freedom from the choice of a new velocity 
distribution. The following procedure was adopted whereby any chosen velocity distribution could 
be modified to satisfy equation (13), while maintaining the same circulation about the blade. In 
order to stay as close as possible to the chosen velocity distribution, an optimization method 
was used. 

I t  is necessary to determine new velocity changes Uy such that 

and 
N -  1 N -  1 

j =  1 j =  1 

The latter condition ensures that the required circulation and hence the required exit flow 
conditions are maintained. Consider the function f defined by 

N -  1 
f =  1 (UI -  u y .  

i = l  

A new set of velocity changes U ;  may be determined by minimizing f ,  subject to the constraints of 
equations (14) and (1 9, by using Lagrange multipliers. Define the function g by 
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g can be minimized by setting to zero its derivatives with respect to cx, f l  and U:.  Since it may be 
considered important to keep certain velocities to exactly those values originally specified, this 
has been made possible. Let there be N F  positions &here the velocities are to be fixed to the 
chosen values, the positions being indicated by the array m(i). So, 

Uk(i ,  = Uk(i) for all m(i), i = 1,. . ., N F .  

Let the array p ( i )  indicate the positions where the velocities may be changed. Then the function g 
becomes 

N V = N - I - N F .  

.L/ is now minimized by setting to zero its derivatives with respect to x , P  and U;(il, giving 
NV + 2 linear equations for the N V + 2 unknowns: a, /3 and { U i ( i ) ;  i = 1,. . . , N V } .  

After some algebra, the following result is reached: 

Clearly there is some arbitrariness to this technique of ensuring mass flow conservation. Its value 
can only really be assessed by trying it out. In the next section, where experience of using this design 
method is discussed, an example of the magnitude of the changes given by equation (16) will be 
presented. 

Once the values of the transpiration flow rates F:  are all known, it remains to determine the 
surface displacements, and thus a new blade profile. Firstly, surface velocities Vi at each node are 
defined as the derivative with respect to surface distance of a quadratic fitted to the potentials at 
that node and its two neighbours. The displacements d i  are then defined as shown in Figure 5 by 

Ff = p i +  1 Vj+ 1 d i +  1 - pi Vid;. (17) 
At the leading edge, the stagnation point, as defined by this method of velocity calculation, will lie 

between two nodes, as shown in Figure 6. It is necessary to decide how to divide the flow FI in order 
to determine the displacements at these nodes. This was crudely done by weighting the flows with 
the velocities Vi and Vi+ giving 
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Figure 5. Blade surface displacements 

Figure 6. Blade surface displacements at the leading edge 

From this start it is then possible to calculate the displacements at each node using equation (17). 
The displacement at node i is made along the normal to the quadratic through nodes i -  1, i 
and i +  1 .  At node 1 the quadratic is fitted through nodes 1, 2 and 3, and at node N it is fitted 
through nodes N - 2, N - 1 and N .  A mesh may be generated for the new blade thus obtained, 
in order to calculate the surface velocity distribution, to compare with the velocities prescribed. 
In the next section the experience of using this design program is presented. 

EXPERIENCE OF THE DESIGN METHOD 

The design method described in the previous section was programmed, and here it will be assessed 
by considering an example of its use. The initial blade, to be called M1, is shown in Figure 7 in the 
finite element mesh. The profile was generated by imposing a T6 thickness distribution (see 
Horlock4) on a parabolic camber line. Some details of the geometry and flow conditions are given 
in Table I. 
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Figure 7. Finite element mesh for cascade M1 

Table I 

u 
A 

Maximum thickness 15% chord 
Pitchlaxial chord 0.6 
Specified inlet flow angle 30.0" 
Specified inlet Mach number 0.4 

Calculated exit Mach number 0.55 
Maximum suction surface Mach number 0.74 

Calculated exit flow angle - 47.0" 

Figure 8 shows the calculated surface velocities. In all the plots of velocities to be shown, the 
symbols represent the mid-points between neighbouring nodes; that is, the positions at which new 
velocities should be specified. Figure 8 also shows a new velocity distribution chosen to have the 
same circulation C as the original distribution, where C is defined by 

r 

By keeping C constant, the same exit flow conditions should be achieved. The integral in 
equation (18) is equal to the integral in a clockwise direction around the mesh ABCD in Figure 7. 
The contributions along AB and CD cancel each other. Far enough upstream and downstream the 
flow conditions are uniform, so 

c = hWy1 - Vyd, 
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Figure 8. Comparison of calculated and specified surface velocities-original blade. Horizontal axis: surface 
distance/pitch, Vertical axis: U/Ui , .  0 M1; 9 specified new velocities 

where h is the pitch and b',, is the tangential velocity. Subscripts 1 and 2 refer to the upstream and 
downstream boundaries respectively. Conservation of mass flow requires that 

where V' is the axial velocity. Since the flow is isentropic, the density is a function of the local 
velocity and the inlet conditions. So, given C, the outlet flow conditions are uniquely determined. 

The new velocity distribution in Figure 8 has been chosen merely to demonstrate the use of the 
design program, not from any loss performance considerations. The next step is to modify these 
velocities according to equation (16), in order to ensure that the net mass flow through the blade 
surface is zero. The first and last velocities on each surface were kept fixed and all others allowed to 
vary. From Figure 9 it can be seen that the modifications are very small. 

The new velocity distribution was chosen to maintain the original circulation. However, it is 
possible to design a new blade having a different circulation. I t  has been found by experience that, 
broadly speaking, the greater the change in circulation, the greater are the changes required to 
ensure mass conservation. When using the program it is therefore advisable to choose an initial 
blade which gives an outlet flow angle close to that which is required, given the inlet conditions. 
This is hardly an inconvenience, since it would be somewhat perverse to do otherwise. 

A new blade can now be defined by calculating the potential changes, the transpired flow rates, 
the displacements and then the new co-ordinates. The result is shown in Figure 10. The most 
striking feature of the new blade is its waviness, particularly on the pressure surface. It may seem 
reasonable to suppose that this is in some way related to the waviness introduced into the specified 
velocity distribution in Figure 9, but this is not so. This is an intrinsic instability of the method and 
can be explained as follows. 
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0 . 0 -------I---, 
0 . 0  0 . 5  1 . o  1 . 5  2 . 0  2 5  

Figure 9. Modification of the specified velocities to cnsure blade closure. Horizontal axis: surface distance/pitch. Vertical 
axis: U/Uin.  0 New velocities; 0 new velocities modified to ensure blade closure 

I 

Figure 10. Comparison of the new tinsmoothed blade with the original blade: M I ;  ~ new blade 

Figure 11 demonstrates how a pattern of alternate positive and negative blowing between nodes 
may have little effect on the potentials at the nodes. This idea was confirmed by finding that the 
matrix (Jij - Jl j )  in equation (10) always has a conjugate pair of eigenvalues which are very small 
compared with all the others. Therefore the matrix B in equation (12) has a conjugate pair of large 
eigenvalues, and for this reason the pattern seen in Figure 11 is easily excited. This is what can be 
observed in Figure 10. 

Clearly it is necessary to eliminate this instability, while recovering the desired displacement. The 
understanding given by Figure 11 suggests that defining new averaged transpired flow rates qy in 
the following manner might help: 
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velocity change potential change 
/ / 

Figure 12. Comparison of the original blade with the first new (smoothed) blade:---Ml;- M2 

41 = i [ q i  + $(qi- + qi+ 1)], i = 2,. . . , N - 2, 

41 =%?I +h, (19) 
1 

4;-1 = z q N - l  + 9 q N - 2 .  
N.B. 

N - 1  N - 1  1 qy= 1 qi=o. 
i= 1 i =  1 

Having done this, a new blade, M2, was obtained and is shown in Figure 12. The desired effect 
appears to have been achieved, and other cases studied confirm the value of this smoothing 
technique. Equations(19) are therefore now used routinely and in all further results to be 
presented. 

The flow around M2 was then calculated to compare the surface velocities with those specified. 
This comparison is shown in Figure 13. The agreement is good after just one iteration. To achieve 
the required velocities more closely, the procedure was repeated again to give a third blade, M3, 
compared with M2 in Figure 14. The specified velocity distribution has now been attained with 
excellent accuracy, as shown in Figure 15. Table I1 compares the exit flow conditions of the three 
blades. 
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Figure 13. Comparison of calculated and specified velocities-first new blade. Horizontal axis: surface distance/pitch. 
Vertical axis KJ/Uin. 0 M2; 0 specified new velocities 

Figure 14. Comparison of the first new blade with the second new blade:---MM;- M3 

The changes in the blade geometry in this example are not large. In particular, the stagger of the 
blades has hardly changed. The possibility of iteratively approaching the desired solution removes 
the limit of small changes which a linearized method imposes. It is therefore possible to achieve 
much larger changes in blade geometry than have been shown above. An example of this will now 
be given. 

The initial profile of the second example, to be called B1, was also generated by imposing a T6 
thickness distribution on a parabolic camber line. Some details of the flow conditions are given in 
Table 111. The flow is incompressible. 

Figure 17 shows the initial profile and Figure 16 shows the corresponding surface velocity 
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Figure 15. Comparison of calculated and specified surface velocities-second new blade. Horizontal axis: surface 
distance/pitch. Vertical axis: U/U," .  0 M3; 0 specified new velocities 

Table I1 

M1 M2 M3 

Exit flow angle - 41.0" - 41.3" - 47.3" 
Exit Mach number 0.55 0.56 0.56 

Table I11 

Maximum thickness 10% chord 
Pitch/axial chord 0.5 
Specified inlet flow angle 20.0" 
Calculated exit flow angle - 40.5" 

distribution. New velocities on the pressure surface have been chosen to eliminate any region of 
deceleration. Beyond the rapid acceleration at the leading edge on the suction surface, the new 
velocity distribution consists of a region of constant velocity followed by a region of deceleration. 
The deceleration is such that if the boundary layer is assumed to be laminar, then according to the 
calculation method of Thwaites5 the boundary layer will always be on the verge of separation. It 
has been shown by Hart6 that if the area under the velocity curve and the velocity at  the trailing 
edge are fixed, then the momentum thickness of the boundary layer at the trailing edge is 
minimized by such a velocity distribution. The practical limitations of this result are recognized by 
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distance/pitch. Vertical axis: U/Ui,. 0 B1; 0 specified new velocities 
Figure 16. Comparison of calculated and specified surface velocities-original blade. Horizontal axis: surface 

0 . 4 ~ l  I I I ' I ' I 

_ - - - - - - - -  - -_  

---  \ '. _ _ _ - - - -  - - -_  

Figure 17. Comparison of the original blade with the first new blade:---Bl;- B2 

Hart,6 and its use here is to illustrate the use of the design method when there is a definite rationale 
behind the choice of velocity distribution. 

The successive modifications to the blades are shown in Figures 17, 19 and 21, from the initial 
blade, B1, to the final blade, B4. It can be seen from Figure 17 that large surface displacements have 
been necessary and therefore it is not surprising that an extra iteration was required, compared 
with the previous example, in order to achieve closely the required velocities. Figures 18,20 and 22 
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Figure 18. Comparison of calculated and specified surface velocities-first new blade. Horizontal axis: surface 
distance/pitch. Vertical axis: U/Ui,. 0 B2; 0 specified new velocities 

Figure 19. Comparison of the first new blade with the second new blade:---B2;- B3 

compare the specified velocities for blades B3, B4 and B4 respectively with those calculated for the 
blades B2, B3 and B4. 

It may be noticed that there are slight changes in the suction surface velocity distributions 
specified for the three new blades. Strictly speaking, new velocities are specified between the nodes 
rather than as a function of surface distance. When a new blade is designed, the surface lengths may 
change slightly, and the specified velocities would give a different circulation from that required. It 
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Figure 20. Comparison of calculated and specified surface velocities-second new blade. Horizontal axis: surface 
distance/pitch. Vertical axis: U/Ui,. 0 B3; 0 specified new velocities 

Figure 21. Comparison of the second new blade with the third new blade:---B3:- B4 

may therefore be necessary to make small changes between iterations to the specified velocities or 
alternatively to the cascade pitch. This is hardly surprising, since otherwise, for example, one is 
effectively asking for a fixed ratio of suction surface to pressure surface lengths. The modifications 
between iterations would depend on the rationale behind the user’s choice of velocity distribution 
and any constraints on geometrical parameters, such as the pitch/axial chord ratio. In this example, 
the specified velocities on the pressure surface have not been changed between iterations, whereas 
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Figure 22. Comparison of calculated and specified new velocities-third new blade. Horizontal axis: surface 
distance/pitch. Vertical axis: UjU,,. 0 B4; 0 specified new velocities 

the specified velocities on the suction surface have been successively modified according to the 
optimization criterion mentioned above. 

The two velocity distributions in Figure 22 agree very well, except near the leading edge on the 
suction surface, where, as may be expected, the sharp change in velocity gradient could not be 
achieved. The outlet flow angles for the four blades are: B1, - 40.5"; B2, - 40.8"; B3, - 40.9"; 

It should be noted that the trailing edge thickness is automatically kept nearly constant in this 
design method, by virtue of the condition that the total mass flow rate through the blade surface 
should be zero. For, if the transpired flow rate through the suction surface is qs ,  then the total 
transpired flow rate through the pressure surface is - qs. The surface displacements at nodes 1 and 
N - 1 are then given by 

B4, - 40.9". 

4 s  = P N -  1 u N -  1 d N -  1 3  

- 4 s  = P1 Uld, .  
Since the velocities U ,  and U,- , will be nearly equal, the displacements - d ,  and d N -  will also be 
nearly equal. The displacement directions are roughly similar. It therefore follows that the trailing 
edge thickness of the blade will remain nearly constant. 

DISCUSSION 

The method developed by Cedar and Stow3 has the advantage that it is not necessary to 
reconstruct the mesh between iterations, but rather the flow field is resolved, using the Newton- 
Raphson procedure, with the surface flow transpiration included. However, the closure of the blade 



CASCADES O F  TURBOMACHINERY BLADES 1381 

at the trailing edge is achieved by fixing the positions of the trailing edge points and thus effectively 
fixing the stagger angle. This severely limits the extent to which blade shapes may be modified and 
the class of specified velocity distributions which are attainable. In the examples given by Cedar 
and Stow3 only small modifications to the blade shapes were made compared with the examples 
shown in this paper. 

The processing time required for the design part of the program is typically about half of that 
required for the flow calculation. The whole program is sufficiently fast to be run interactively on a 
medium-sized computer. The problems cncountered have been overcome satisfactorily, to give a 
useful engineering tool, if not by a mathematically exact procedure. The important geometric and 
flow parameters are controllable and the specification of velocities as a function of surface distance 
facilitates boundary layer considerations. While one is restricted to subsonic flow, the modified 
version of the flow program, FINSUP, described by Whitehead and Newton’ is capable of 
calculating cascade flows which are supersonic at the inlet or outlet. It is envisaged that a similar 
design method could be developed in this case. 
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